

A reta e os números reais

Para pensar

Preencha os espaços abaixo com números

da seguinte lista:

4,2 -5 -3,1 0,555... 0 $\sqrt{11}$

- números inteiros não naturais:
- números racionais não inteiros:
- números reais não racionais:
- números reais não irracionais:

Nossa aula

Vimos, na Aula 59, que os números racionais podem ser: frações, inteiros, decimais exatos e dízimas periódicas. Observe estes dois números:

0,25 e **0,252525...**

O primeiro tem duas casas decimais, portanto um **número finito** de casas decimais. Por isso, é chamado de **decimal exato**.

O segundo tem um **número infinito** de casas decimais com um período que se repete (25). Esse número é conhecido como **dízima periódica**.

Vejamos o que acontece com o número decimal:

0,010110111...

Ele tem uma infinidade de casas decimais que não se repetem, portanto, não é decimal periódico.

Pense um pouco e descubra as casas que virão a seguir nesse número.

Após a vírgula, a 1ª casa decimal é o zero, seguido do número 1; depois outro zero, seguido duas vezes do número 1, e assim por diante. Logo, os próximos algarismos serão o zero e depois quatro vezes o número 1. Esse número não é racional. Ele é um exemplo de **número irracional.**

Outro exemplo de número irracional, bastante conhecido e muito importante em Matemática, especialmente usado em geometria, é o número π = 3,141592...

60

Ao estudar a operação de radiciação (Aula 54), e particularmente a raiz quadrada, vimos que nem todo número natural tem raiz quadrada natural.

Os números naturais 0, 1, 4, 9, 16, 25, 36, 49, 64, 81 e 100, são chamados **quadrados perfeitos**. As raízes quadradas desses números são também números naturais:

$$\sqrt{0} = 0$$
 $\sqrt{16} = 4$ $\sqrt{49} = 7$
 $\sqrt{1} = 1$ $\sqrt{25} = 5$ $\sqrt{64} = 8$
 $\sqrt{4} = 2$ $\sqrt{36} = 6$ $\sqrt{81} = 9$
 $\sqrt{9} = 3$ $\sqrt{100} = 10$

Os outros números naturais, diferentes dos números quadrados perfeitos, têm como raízes quadradas números irracionais. Outras raízes, com índices diferentes de 2 e que não são números naturais, também são números irracionais. Por exemplo:

$$^{3}\sqrt{4}$$
 $^{4}\sqrt{5}$ $^{3}\sqrt{100}$

Ao fazer o cálculo das raízes abaixo, numa calculadora, encontramos os seguintes resultados:

$$\sqrt{2} = 1,414213...$$

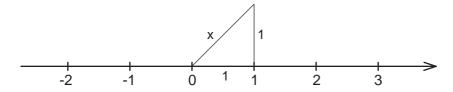
 $\sqrt{3} = 1,73205...$
 $\sqrt{5} = 2,23606...$

Os pontos que aparecem no final do número não aparecem no visor da máquina de calcular. Eles indicam que as casas decimais continuariam a aparecer se a máquina fosse maior e comportasse mais algarismos.

Vimos também que podemos assinalar todos os números racionais na reta numérica, associando a cada número um ponto da reta bem determinado.

Podemos fazer o mesmo com os números irracionais?

Vejamos a representação de $\sqrt{2}$ na reta numérica, com auxílio de uma construção geométrica. Vamos construir um triângulo retângulo isósceles de catetos iguais a 1 sobre a reta numérica:



Calculamos a medida da hipotenusa aplicando o Teorema de Pitágoras:

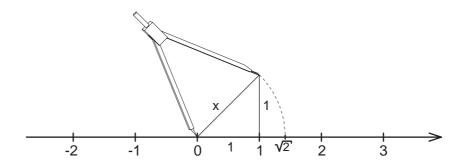
$$x = 1 + 1$$

$$x = 1 + 1$$

$$x = 2$$

$$x = \sqrt{2}$$

Para marcar na reta a medida da hipotenusa, que é $\sqrt{2}$, posicionamos em O a ponta sem grafite (ponta seca) de um compasso, com abertura igual ao tamanho da hipotenusa. Descrevendo um arco com o compasso, encontramos o ponto na reta que corresponde a $\sqrt{2}$:



Na prática, localizamos uma raiz quadrada na reta quando conhecemos um valor aproximado da raiz. Por exemplo: localize o número $\sqrt{5}$ na reta numérica. Vejamos quais são os números quadrados perfeitos mais próximos de 5:

5 está entre 4 e 9 =
$$4 < 5 < 9$$

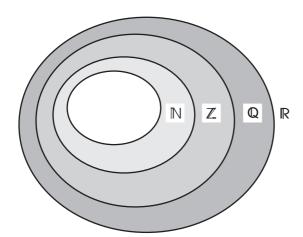
 $\sqrt{5}$ está entre $\sqrt{4}$ e $\sqrt{9}$ = $\sqrt{4} < \sqrt{5} < \sqrt{9}$
 $\sqrt{5}$ está entre 2 e 3 = $2 < \sqrt{5} < 3$

Assim, podemos assinalar a $\sqrt{5}$ entre os números 2 e 3 :

Procurando o valor de $\sqrt{5}$ por tentativa, teremos uma localização mais exata. Sabendo que $\sqrt{5}$ está entre 2 e 3, podemos escrever que $\sqrt{5}$ = 2,... Experimentamos então alguns números, por exemplo:

Então, podemos representar $\sqrt{5}$ na reta com uma localização razoável, ou seja, próxima do valor exato do número:

Sabendo que é possível representar na reta os números racionais e os irracionais, podemos chamá-la **reta real**. O **conjunto dos números reais** (R), que é a reunião do conjunto dos números racionais com o conjunto dos números irracionais. Veja o diagrama abaixo:



O diagrama mostra a relação entre os diversos conjuntos: todo número natural é inteiro; todo número inteiro é racional; todo número racional é real, assim como, todo número irracional é também real. Inversamente, todo ponto de reta real representa um número, que pode ser racional ou irracional

Exercícios

Exercício 1

Assinale na reta numérica os seguintes números reais:

-2,5

0,75

 $\sqrt{2}$

π -0.666...

Exercício 2

Assinale V se a afirmação for verdadeira ou F se for falsa:

- **a)** () $\frac{1}{2}$ é um número real menor que 1.
- **b)** () $\sqrt[3]{10}$ é um número real menor que 3.
- c) () 2,151617... é um número racional.
- **d)** () -5 é um número inteiro, logo é um número real.
- **e)** () π não é um número real.
- **f)** () $\sqrt{3}$ é um número real
-) $\sqrt{3}$ é um número racional.

Exercício 3

- **a)** Qual o menor número inteiro maior que $\frac{3}{4}$ **b)** Qual o maior número inteiro menor que $-\frac{3}{4}$

Exercício 4

Dê exemplo de:

- a) dois números inteiros maiores que $-\frac{1}{4}$
- **b)** dois números racionais que estão entre 1 e 0.