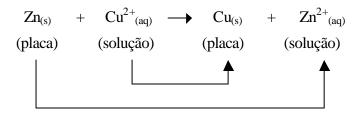

Pilhas elétricas

Nas pilhas, aproveitam-se as reações de oxi-redução (transferência de elétrons) para produzir corrente elétrica. Uma pilha é formada por 2 ou mais **eletrodos** (placa de metal mergulhada numa solução contendo cátions desse metal) unidos por uma **ponte salina** (permite uma corrente de íons) e um **condutor** (permite uma corrente de elétrons).

 $Potencial\ de\ redução\ (E_{red})$: é a capacidade de atrair elétrons que cada íon metálico em solução apresenta.

Pilha de Daniell: é composta por dois eletrodos: um de Zn em solução de ZnSO₄ e outro de Cu em solução de CuSO₄.



No eletrodo de Zn ocorre a seguinte reação:

$$Zn_{(s)}$$
 \longrightarrow $Zn^{2+}_{(aq)}$ + 2 e (reação de oxidação) (placa) (solução) $\begin{pmatrix} vão \ para \ o \ eletrodo \ de \ Cu \end{pmatrix}$

No eletrodo de Cu ocorre a seguinte reação:

Reação Global:

Pela reação global, percebe-se que a placa de Zn sofre corrosão e ainda ocorre um aumento da concentração de Zn^{2+} na solução. No eletrodo de cobre, íons Cu^{2+} recebem os elétrons cedidos pelo Zn e se transformam em Cu, que é depositado na placa de Cu, diminuindo a concentração de Cu^{2+} na solução.

Para manter o equilíbrio elétrico de cargas positivas e negativas na solução, íons Zn²⁺ migram para o eletrodo de Cu e íons Cu²⁺ migram para o eletrodo de Zn, através da ponte salina.

Obs: O eletrodo que sofre redução é chamado de **cátodo** (pólo positivo) e o eletrodo que sofre oxidação é chamado de **ânodo** (pólo negativo). E_{red} do cátodo é sempre maior que a E_{red} do ânodo. O sentido da corrente elétrica que passa pelo condutor é do ânodo para o cátodo.

Representação de uma pilha:

Exemplo: a representação da pilha de Daniell é dada por:

$$Zn_{(s)}\,/\,Zn^{2+}_{\ (aq)}\,/\,/\,Cu^{2+}_{\ (aq)}\,/\,Cu_{(s)}$$